

	W_{o}	Q	V _{AVE}	TW
SYM	(m)	(m³/s)	(m/s)	(m)
0	0.44	0.64	4.60	0.49
0	0.44	0.41	3.14	0.49
0	0.94	1.85	2.83	0.94
•	0.94	2.38	3.63	0.94
▽	0.44	0.59	4.27	0.38
▽	0.44	0.39	2.83	0.38

To be used for predicting channel velocities downstream from culvert outlets where hing tailwater prevails. Velocities obtained from te uf this figure can be used with Figure 2 of HEC 11 for sizing rip rap. (Do not us Fig of HEC 11: use Mean Velocity Values.)

DISTRIBUTION OF CENTERLINE VELOCITY FLOW FROM SUBMERGED OUTLETS